I. Introduction

While we don't have a complete classification of 3 -manifolds, we do know a lot about them. we can break them into simple pieces
2.e. Serfert fibered spaces and Hyperbolic manifolds
and we have lot's of tools to study each of these pieces
In this course we will

1) gives several constructions of 3-monifolds:
identifying polyhedra
Heegaard splittings
Dehn surgery
2) Discuss the decompositions of 3 -manifolds mentioned above:

Prime and Torus Decompositions
3) Show how to convert algebra in to topology!

Disk and Sphere Theorems
4) Extensively study Dehn surgery
egg. Kirby's Theorem, 3-mfll that are not surgery on a knot, knots with same surgenies, knots charactuized by surgery, loosing \& gaining properties via surgery...
A. Examples and Constructions
simple examples

$$
\mathbb{R}^{3}, S^{3}, D^{3}, T^{3}=S^{\prime} \times S^{\prime} \times S^{\prime}, \Sigma \times S^{\prime}, \Sigma \times[0,1]
$$

Construction 1: Identify faces of 3-dim'l polyhedra
2D example: every surface is obtained this way
 projective
 plane

In 3-dimensions:
example:

identify opposite faces by translation
example:

identity opposite faces of a regular dodecahedron after a rot- of $\frac{2 \pi}{10}$
this gives a manifold D called the Poincare dodecahedral space
exenciée: check D is a 3 -manifold
(easy for points on interior of dodecahedron and on faces and edges.
need to be careful at verticies)
exercise (harden):
suppose \bar{X} is obtained by identifying faces of a finite \# of polyhedra

1) show \bar{X} is a manifold iff the link of every vertex is a sphere (the link is formed by taking a nile of vertex in each simple and gluing them \& taking ∂
eg in 2D

2) let X be the result of the following identification

in the quotient space is a unique renter and its ubhd is a cone on τ^{2} ie its link is T^{2}
so this is not a 3-mifd
but X-venter is!
3) show X-vertex $\cong S^{3}-K$
where $K=$ S
(this is quite hard! maybe google!)
4) show \mathbb{X} is a 3 -manifold
if

$$
X(\mathbb{X})=0
$$

Euler characteristic
note: the dodecahedron has has 12 faces 30 edges. 20 vertices
edges are identified in 3's
vertices "I "4's
faces ". "2's
\therefore we have $\left.\begin{array}{cc}\frac{1}{6} & 3 \text {-cell } \\ 6 & 2 \text {-cells } \\ 10 & 1-c e l l \\ 5 & 0 \text {-cells }\end{array}\right\} \Rightarrow X(D)=0$
so D a manifold follows from last extencue
exenase:

$$
\begin{aligned}
& H_{*}(D) \cong H_{*}\left(S^{3}\right) \\
& \text { but } \pi_{1}(D) \neq 1 \\
& \quad\left(\text { extra credit }\left|\pi_{1}(D)\right|=120\right)
\end{aligned}
$$

example: take a" lens"

identify top and bottom faces after a rotation through $\frac{2 \pi g}{p}$ where $(p, q)=1$
the quotient space is called a lens space and denoted $L(p, q)$
exercise:

1) Show $L(1,9) \cong S^{3}, L(0,9) \cong S^{\prime} \times S^{2}$
2) Show $\pi_{1}(L(p, q))=\mathbb{Z} / p$
3) let $S^{3} \subset \mathbb{C}^{2}$ be the unit sphere let \mathbb{Z} / p act on S^{3} by the action generated by

$$
\begin{aligned}
\left(z_{1}, z_{2}\right) & \mapsto
\end{aligned} \begin{aligned}
& i 2 \pi / p\left.z_{1}, e^{i 2 \pi / p} z_{2}\right) \\
& \text { show } L(p, q) \cong s^{3} / \sim \\
& \sim= \text { quotient space } \\
& \text { gen by action }
\end{aligned}
$$

a topological space X is truingulable if $X \cong|k|$
where K is a finite simplicial complex (re. obtaried by identificing faces of a finite number of simplicies) in dimension 3, we are gluing a finite number of tetrahedra

Fact (Noise 1952):
any 3 -manifold is tringulable and any 2 triangulations have "subdivisions" that are simplicially is omorphic

Construction 2: Heegaard splittings
a handle body of genus g is a 3 -manifold V homeomorplici to

that is conscites the embedding. of a surface of genus g in \mathbb{R}^{3} shown above and V is the compact region bounded by it
lemma 1:
M^{3} is a handlebody of genus 9

$$
\Leftrightarrow
$$

\exists embedded circles a_{1}, \ldots, c_{g} in ∂M
sit. \exists disjoint properly embedded disks $D_{1} . . . D_{g}$ in M st. $\partial D_{i}=c_{i}$ and $M\left(\right.$ tubular ibid $\left.\left(U D_{i}\right)\right)$ is diffeomorphic to B^{3}
exercise: generalize this by replacing second statement
with $D_{1} \ldots D_{\text {gte }}$ disks that cut M into $(k+1) 3$-balls
we will prove this later, but for now
a Heegaard splitting of a closed 3-manifold M is a decomposition of M

$$
M=V_{1} U_{\Sigma} V_{2}
$$

where V_{1}, V_{2} are genus g handlebodies

$$
\Sigma=V_{1} \cap V_{2}=\partial V_{1}=\partial V_{2}
$$

Σ is called a Heegaard surface of the splitting, the genus of the splitting is the genus of E
another point of view
if V_{1}, V_{2} are two handlebodies of genus g and $h: \partial V_{1} \rightarrow \partial V_{2}$ is a ln orleritation reversing) difteomorphism, then consider

$$
V_{1} U_{h} V_{2}=V_{1} \Perp V_{2} / /_{p \in \partial V_{1}} \sim h(p) \in \partial V_{2}
$$

exercise: this is an oriented 3 -mfd
we say $\left(V_{1}, V_{2}, h\right)$ is a Heegaard splitting of M if

$$
M \cong V_{1} \cup_{n} V_{2}
$$

exencisé: show definitions are "equivalent" (and why" -"?)
lemma 2:
given two n-manifolds μ_{1}, μ_{2} and diffeomorphisms

$$
h_{0} . h_{1}: \partial \mu_{1} \rightarrow \partial M_{2}
$$

that are isotopic, then

$$
\mu_{1} U_{h_{0}} \mu_{2} \cong \mu_{1} U_{u_{1}} \mu_{2}
$$

Remark:

1) This is var important and even the proof is useful as we will see late!
2) this shows that the second detriction of Heegaard splitting only clepends on h upto isotopy

Proof:
let $h:[0,1] \times \partial M_{1} \rightarrow \partial M_{2}$ be the isotopy from h_{0} to h_{1} and write $1 t:[0,1] \times \partial M_{1} \rightarrow[0,1] \times \partial M_{1}$, $(t, p) \longmapsto\left(t, h_{0}^{-1} \circ h(p, t)\right)$
clearly It is a diffeomorphism (or exercise!) recall, \exists a neighborhood N of ∂M_{1} in M_{1}
and a diffeomorphism $\psi:[0,1] \times \partial \mu_{1} \rightarrow N$
st. $\psi(1, p)=p \in \partial M_{1}$
we now build our diffeomorphism

$$
\Phi: M_{1} v_{h_{1}} M_{2} \rightarrow M_{1} v_{n_{0}} M_{2}: p \mapsto \begin{cases}p & p \in M_{2} \nu\left(\overline{M_{1}-N}\right) \\ \psi \cdot H \circ \psi^{-1}(p) \quad p \in N\end{cases}
$$

note: Φ well-defined on $M_{1} \Perp M_{2}$ since on $N \cap \overline{M_{1}-N}=\{0\} \times \partial M_{1}$

$$
\begin{aligned}
& H(0, p)=h_{0}^{-1} \cdot h(0, p)=h_{0}^{-1} \circ h_{0}(p)=p \\
& \text { so } \psi \circ H \circ \psi^{-1}(p)=p
\end{aligned}
$$

(if you make h constant near $t=0$, this is clearly smooth too)

I decends to give a well-defined map on the quotient space because

$$
p \in \partial M_{1} \sim h_{1}(p) \text { on left }
$$

and $h_{1}(\rho) \in \partial M_{2} \xrightarrow{\Phi} h_{1}(\rho)$
while $p \in \partial M_{1} \xrightarrow{\Phi} \psi \circ H \circ \psi^{-1}(p)=\psi \circ H(1, p)$

$$
\begin{aligned}
& =\psi 0\left(1, h_{0}^{-1} \circ h_{1}(\rho)\right) \\
& =h_{0}^{-1} \circ h_{1}(\rho)
\end{aligned}
$$

and on the right $h_{0}^{-1} h_{1}(p)$ is identified to $h,(p)$
exencrsé:

1) show Φ is a homeomorphism
2) Show, with care, can assume Φ is a diffeomorphism
Hint first recall or look up why $M_{1} v_{h_{i}} \mu_{2}$ is a smooth mfl !
exercise:
Extend this lemma to show if $A \subset \partial M_{1}$ is a compact domain and $h_{0}, h_{1}: A \rightarrow \partial M_{2}$ are isotopic embeddings then $M_{1} U_{n_{1}} M_{2} \cong M_{1} U_{n_{2}} M_{2}$

Proof of lemma 1:
\Longleftrightarrow clear

\downarrow remove ublds to get

(\Leftarrow) note if $M^{\prime}=M \cdot$ ibid (properly embedded $\left.D^{2}\right)$

to get back M just glue $D^{2} \times[0,1]$ back to M^{\prime} where $D^{2} \times\{0,1\}$ is identified with the copies of $D \subset \partial M^{\prime}$
so if $\exists \mathrm{g}$ disks $D_{1} \ldots D_{g}$ in M st.

$$
M-U_{\text {tubular ubhd }}\left(D_{i}\right) \cong B^{3}
$$

then $M=B^{3}$ with 9 copies of $D^{2} \times[0,1]$ g lied on along embeddings of $D^{2} \times\{0,1\}$
but so is a handlebody of genus g ! now done by

Fact any two oriented embedding of a collection of disks into a connected surface are isotopic
(maybe try to prove this!)

Theorem 3:
every close (oriented) 3-manitold has a Heegaard de composition

Proof: let K be a triangulation of M 2.e. $M \cong|K| \quad K$ is a bunch of tetrahedra glued together along their faces

let $V_{1}=$ ublud of 1 -skeleton

exercise: V_{1} is a handle body of genus \# edges - \#verticies + 1
Hest: cut along one disk per edge use lemma 1
exercise: $V_{2}=\overline{M-V_{1}}$ is also a handle body

Hint: cut along faces of K in V_{2}
M a closed 3 -manifold, the Heegaard genus $g(M)$ is

$$
g(M)=\min \{\operatorname{genus}(\Sigma): \Sigma \text { a Heegaard ste for } M\}
$$

note: if $g(M)=0$, then $M \cong s^{3}$
indeed, let $D^{3}=$ unit disk in \mathbb{R}^{3}

$$
S^{3}=\text { unit sphere in } \mathbb{R}^{4}
$$

set $f: D^{3} \rightarrow S^{3}:(x, y, z) \mapsto\left(x, y, z, \sqrt{1-x^{2}-y^{2}-z^{2}}\right)$

$$
g: D^{3} \rightarrow s^{3}:(x, y, z) \mapsto\left(x, y, z,-\sqrt{1-x^{2}-y^{2}-z^{2}}\right)
$$

$S^{3}=\operatorname{mit} u \operatorname{ing}$ and if $n \operatorname{mig}=S^{2} \subset \mathbb{R}^{3} \subset \mathbb{R}^{4}$
so $g\left(S^{3}\right)=0$
now if $h=\left.g\right|_{\partial D^{3}} \circ\left(\left.f\right|_{\partial D^{3}}\right)^{-1}$ then

$$
S^{3}=D^{3} U_{4} D^{3}
$$

if h^{\prime} is any homomorphism $S^{2} \rightarrow S^{2}$ then we claini $D^{3} U_{n}, D^{3} \cong D^{3} U_{n} D^{3} \cong S^{3}$ to see this we note

Fact: any homeomorphism $\phi: s^{2} \rightarrow s^{2}$
extends over B^{3}

Proof: just cone

$$
\begin{aligned}
& B^{3}=s^{2} \times[0,1] / s^{2} \times\{0\} \\
& \Phi: s^{2} \times\{0,1] / \sim \longrightarrow s^{2} \times[0,1] / \sim \\
&(p, t) \longmapsto(\phi(\rho), t)
\end{aligned}
$$

is a homeomorphism
now let $\phi=h^{-1} \Delta h^{\prime}$ then ϕ extends
to $\Phi: B^{3} \rightarrow B^{3}$ and

gives a homeomorphism
(prove this if not obvious!)
now consider $g(M)=1$
then $M=S^{\prime} \times D^{2} u_{h} S^{\prime} \times D^{2}$
for $h: S^{\prime} \times \partial D^{2} \rightarrow S^{\prime} \times \partial D^{2}$
(orientation reversing)
Fact (see Rolfsen):
h is isotopic to

$$
h(\theta, \phi)=\left[\begin{array}{ll}
a & p \\
b & q
\end{array}\right]\left[\begin{array}{l}
\theta \\
\phi
\end{array}\right]=(a \theta+p \phi, b \theta+q \phi)
$$

where $a q-b p=-1$
if $p=0$, then $a q=-1$ so we can
assume $a=1, q=-1$ and

$$
h(\theta, \phi)=(\theta, b \theta-\phi)
$$

if $b=0$ then we have

$\phi=$ canst circle
this gives an S^{2} in $M=S^{\prime} \times D^{2} u_{4} S^{\prime} \times D^{2}$ and we get one for each $\phi \in S^{\prime}$
intuitively we get $S^{\prime} \times s^{2}$
rigorously let $f: D^{2} \rightarrow S^{2}$

$$
\begin{aligned}
(x, y) & \mapsto\left(x, y, \sqrt{1-x^{2}-y^{2}}\right) \\
g: D^{2} & \rightarrow s^{2} \\
(x, y) & \mapsto\left(x, y, \sqrt{1-x^{2}-y^{2}}\right)
\end{aligned}
$$

we get

$$
\begin{aligned}
\tilde{\Phi}: S^{1} \times D^{2} \cup S^{\prime} \times D^{2} & \longrightarrow S^{1} \times S^{2} \\
(\phi, p) & (\phi, f(p)) \\
(\phi, \rho) & \longmapsto(\phi, g(p))
\end{aligned}
$$

easy to check $\tilde{\Phi}$ induces a homeomorphism

$$
S^{\prime} \times D^{2}{v_{4}}^{\prime} \times D^{2} \longrightarrow S^{\prime} \times S^{2}
$$

exercise:

1) check this
2) check you get $S^{\prime} \times s^{2}$ for any b (with $p=0$)
now if $p \neq 0$ then
Claim: $\quad \mu=L(p, q)$
to see this recall $L(p, q)$ is

glue top to bottom with $\frac{2 \pi q}{p}$ twist
now

this is a torus \sum efta gluing
exercise:
3) Show components of $L(p, q)-\Sigma$ are tori and compute the glucrig map h
4) show for any $h w / p \neq 0$ you get $L(\rho, q)$
5) $\pi_{1}(L(p, q)) \cong \mathbb{E}_{p}$
6) $L(p, q) \cong L\left(p, q^{\prime}\right)$ if $q \equiv \pm q^{\prime} \bmod p$
(this is iff but only if harder)
7) Show $L(m, q)$ is a p fold cover of $C(m p, q)$

In particular, all $L(p, q)$ are covered by $L(1,9) \cong L(1,0)$

$$
\cong S^{3}
$$

show this!
exencise: Show Poincare homology sphere has a Heegaird 2 splitting
if Σ is a Heegaard surface for M separating M into $V_{1} U_{\Sigma} V_{2}$, then
let α be an embedded orc in Σ
push the intaior of α into V_{1} or V_{2}, say V_{2} for now, call it $\tilde{\alpha}$

note: $\alpha \cup \mathcal{Z}=\partial$ dusk D
let $V_{1}^{\prime}=V_{1} \cup N(\tilde{\alpha})$ a tubular nibhd of $\tilde{\alpha}$

$$
V_{2}^{\prime}=\overline{V_{2}-N(\alpha)}
$$

note: $N(\alpha)=D^{2} \times I$ let $D_{1}=D^{2} \times\{p t\}$ and \exists disk $D_{2} \subset V_{2}^{\prime}$ given by $D \cap V_{2}^{\prime}$
now $\overline{V_{1}^{\prime}-n b h d ~} D_{1} \cong V_{1}$ and

$$
\overline{V_{2}^{\prime}-n b h d D_{2}} \cong V_{2}
$$

so V_{1}^{\prime} and V_{2}^{\prime} are handebodies (check this it not obvious)
we say $\Sigma^{\prime}=\partial V_{1}^{\prime}$ is the Heegaard surface obtained from E by stabilizing
exercise: show stabilization, up to isotopy, is independent of α or whether interior α pushed into V_{1} or V_{2}
Fact: any 2 Heegaard splittings of M are isotopic after some finite number of stabilization
(think about how to prove this)
Construction 3: Dehn surgery on links
let M be a closed 3 -manifold with
TC ∂M a torus
a Dehn filling of M is any manifold obtained by gluing M and $S^{\prime} \times D^{2}$ along T and $\partial\left(S^{\prime} \times D^{2}\right)$
2.e. $M U_{\phi} S^{\prime} \times D^{2}=M \Perp S^{\prime} \times D^{2} / \sim \partial\left(S^{\prime} \times D^{2}\right) \sim \phi(p)$
where $\phi: \partial\left(S^{\prime} \times D^{2}\right) \rightarrow T$ is a homeomorphism denote this by $M(\phi)$
lemma 4:
the homeomorphism type of $M(\phi)$ is determined by $\alpha=\phi(\mu)$ up to isotopy, where $\mu=\{\rho t\} \times \partial D^{2}$
meridian of $S^{1} \times D^{2}$
Proof: $S^{\prime} \times D^{2}=I \times D^{2} \cup I \times D^{2}$

suppose ϕ_{1} and $\phi_{2}: \partial\left(S^{\prime} \times D^{2}\right) \rightarrow T$ st.

$$
\alpha_{1}=\phi_{1}(\mu) \text { isotopic to } \alpha_{2}=\phi_{2}(\mu)
$$

so isotop ϕ_{1} so that $\phi_{1}=\phi_{2}$ on $h_{2} \cap \partial\left(S^{\prime} \times D^{2}\right)$ define a homeomorphism

$$
M u_{\phi_{1}} h^{2} \rightarrow M{v_{\phi_{2}}} h^{2}
$$

by the identity map to get $M\left(\phi_{1}\right)$ need to glue h^{3} to $M u_{\phi_{1}} h^{2}$ by ϕ_{1} on $h^{3} n\left(\partial s^{\prime} \times D^{2}\right)$ and the identity on rest of ∂h^{3}
denote this mop by $\tilde{\phi}_{1}: \partial h^{3} \rightarrow M u_{\phi_{1}} h^{2}$

and similarly for $M\left(\phi_{2}\right), \tilde{\phi}_{2}: \partial h^{3} \rightarrow M{u_{\phi_{2}}}^{h^{2}}$

so we need $\tilde{\phi}_{2}^{-1} \circ \tilde{\phi}_{1}: \partial h^{3} \rightarrow \partial h^{3}$ to extend oven h^{3} recall, above we saw any home. of $S^{2}=\partial n^{3}$ extends to $B^{3}=h^{3}$
so $\exists \Phi: h^{3} \rightarrow h^{3}$ that extends $\widetilde{\phi}_{2}^{-1} \circ \widetilde{\phi}_{1}$
now

$$
\begin{aligned}
& M\left(\phi_{1}\right)=\left(M u_{\phi_{1}} h^{2}\right) \underset{\Phi_{1}}{u} h^{3} \rightarrow M\left(\phi_{2}\right)=\left(M u_{\phi_{2}} h^{2}\right){\tilde{q_{2}}}^{2} h^{3} \\
& \rho \longmapsto \rho \longmapsto P \longrightarrow \Phi(\rho)
\end{aligned}
$$

is a homeomorphism
exencsé: Show that for any simple closed curve $\alpha \subset T$ that doesn't bound a disk \exists a homeomorphism $\phi: \partial\left(s^{\prime} \times D^{2}\right) \rightarrow \tau$ such that $\phi(\mu)=\alpha$
so Dehn fillings determined by a s.c.c $\alpha \subset T \subset \partial M$ denote this by $M(\alpha)$
given a basis λ_{1}, μ for $H_{1}\left(T^{2}\right)$ any simple closed curve $\propto c T^{2}$ that doesn't bound a disk is represented by

$$
[\alpha]= \pm(a \lambda+b \mu)
$$

for a pair of co-prime integers a, b
exencose: Check this
thus non-trivial s.c.c. on T are in one-to-one correspondence with

$$
\begin{aligned}
& \mathbb{Q} \cup\{\infty\} \\
& \alpha \longmapsto b / a
\end{aligned}
$$

so it we have a basis for $H_{1}(T)$ then Dehn fillings can be denoted by $M(b / a)$

Common situation: K a $k n o t$ in M^{3} ($K=$ in age of embedding $\left.S^{\prime} \operatorname{lin} M^{3}\right)^{-}$
let $N(K)=$ small tubular neighborhood of K

$$
\begin{gathered}
\cong S^{1} \times D^{2} \\
M_{K}=\overline{M \backslash N(K)} \\
T=\partial N(K) c \partial M_{k}
\end{gathered}
$$

then Dehn filling $T \subset \partial M_{k}$ is called Dehn
surgeny on K and is denoted

$$
M_{k}(\alpha) \text { or } M_{k}(b / a)
$$

note: in T we have the curve $\mu=\{p+\} \times \partial D^{2}$
this is called the meridian of K
any curve $\lambda \subset T$, with μ, forms a basis for $H_{1}(T)$ is called a longitude for K it is also called a framing note: infinitely many longitudes $\lambda+n \mu$ any $n \in \mathbb{Z}$ given a longitude we can express Dehn surgery using $\mathbb{Q} \cup\{\infty\}$
note: $M_{K}(\infty)=M_{K}(\mu) \cong M$!
exencise: if K is null-homologous in M then \exists ! simple closed curve $\lambda \subset T \subset \partial \mu_{k}$ that is trivial in M_{K}
moreover, $\lambda_{1} \mu$ forms a basis for $H_{1}(T)$
in particular sirice $H_{1}\left(S^{3}\right)=0$ we see we can use rational numbers to describe De hun surgery on knots in S^{3} !
example:
i) if U is the unknot in S^{3}
then $S_{U}^{3} \cong D^{2} \times S^{1} \quad\left(\right.$ recall $\left.S^{3}=S^{\prime} \times D^{2} \cup D^{2} \times S^{\prime}\right)$

errencrse:

1) $S_{U}^{3}(0) \cong S^{1} \times S^{2}$
2) $S_{u}^{3}(-p / q) \cong L(p, q)$
(? might have gotten orientation wrong in def" above ... so maybe

$$
S_{v}^{3}(p / q) \cong L(p, q)
$$

but we want to orient so we the clainied statement)
2) any knot $k<s^{3}$ bounds a Seifert surface that is a surface $\Sigma \subset S^{3}$ with $\partial \Sigma=K$

note: $\lambda=\partial N(K) \cap \Sigma$

we use this λ to describe Dehn surgeries $\operatorname{using} \mathbb{Q} \cup\{\infty\}$
exencrie: show
\cong Poincare homology sphere
(this is hard!)

Theorem 5 (Lickorish, Wallace ~1960):
every closed, oriented 3-manifold can be obtained by Dehn surgery on a link in S^{3}
to prove this, we need two results, the first is about homeomorphisms of surfaces
let \sum be an orientable surface
γ a simple closed curve on Σ
$N(\gamma)=S^{\prime} \times[0,1]$ a regular neighborhood of γ

a positive Dehn twist about γ is a homeomorphism

$$
\tau_{\gamma}: \Sigma \rightarrow \Sigma
$$

defined by

$$
\tau_{\gamma}=i d e n t i x y \text { on } \overline{\Sigma \backslash N(\gamma)}
$$

and

$$
\begin{aligned}
\tau_{\gamma}: & N(\gamma) \longrightarrow \\
\prime \prime & N(\gamma) \\
s^{\prime \prime} \times[0,1] & s^{\prime \prime} \times[0,1] \\
(\theta, t) & \longmapsto(\theta-2 \pi t, t)
\end{aligned}
$$

exercise: τ_{γ} is well-defined up to isotopy (ie if you isotop γ or choose a different neighborhood of γ then resulting homes. is is otopic to τ_{γ})
$\tau_{\gamma}^{ \pm 1}$ is called a Dehn twist about γ
Fact (Dehn-Lickorish):
any orientation preserving homeomorphis of a surface is isotopic to a composition of Dehn twists
in fact, Humphries showed you only need Den twists about

The second result we need is
lemma 6:
let $\Sigma \subset M^{3}$ be a surface and M^{\prime} be the result of cutting M^{3} along Σ and regluing by a Den twist $\tau_{\gamma}{ }^{ \pm 1}$ then $M^{\prime} \cong M_{\gamma}(7 \mp 1)$ where 7 is the framing on γ in duce by Σ
 we will use this again!
here is one more simple lemma
lemma 7:
Suppose the homeomorphism $\phi: \Sigma \rightarrow \Sigma$ is a composition $\phi=\phi_{1} \circ \phi_{2}$ of two homeomorphisms
let $\Sigma \subset M$ and $N=\Sigma \times[-1,1]$ be a n bud of Σ

$$
w / \Sigma=\Sigma \times\{0\}
$$

set $\Sigma^{\prime}=\sum x\{1 / 2\}$
let $M^{\prime}=M$ cut along Σ and reglued by ϕ and $M^{\prime \prime}=M$ cut along Σ and Σ^{\prime} and reglued by ϕ_{2} along τ^{\prime} and ϕ_{1} along Σ
Then $M^{\prime} \cong M^{\prime \prime}$

Proof of Th -5 :
given M then \exists a genus g Heegaard splitting

$$
M=V_{1} V_{\Sigma} V_{2}
$$

by stabilizing we know 5^{3} has a genus g splitting

$$
s^{3}=V_{1} v_{\tau} \quad v_{2}
$$

so \exists some orion. pres. homeomorphism $\phi: \Sigma \rightarrow \Sigma$ st. $M=S^{3}$ cut along Σ and reglued by ϕ now Dehn-Lickorish $\Rightarrow \phi=\tau_{\gamma_{1}}^{\varepsilon_{1}} \ldots .0 \tau_{\gamma_{n}}^{\varepsilon_{n}}$ for some curves γ_{i} and $\varepsilon_{2}= \pm 1$
let $N=\sum \times[-1,1]$ be a ind of $\Sigma<S^{3}$
now let $\Sigma_{i}=\sum \times\left\{\frac{1}{i}\right\} \quad \tau=1, \ldots n$ and think of γ_{i} as sitting on Σ_{n-i+1} now $M=S^{3}$ cut a long the Σ_{i} and reglued along τ_{2} by $\tau_{\gamma_{n-i+1}}$ by lemma l 7 by lemma each regluing by $\tau_{\gamma_{n-2+1}}$ is a

Den surgery on γ_{n-1+1}
$\therefore M=s^{3}$ after Dehn surgery a long $\gamma_{1} \cup \ldots u \gamma_{n}$
exencsé: Using Humphries show M can be obtained from S^{3} by Den surgery on a link of unknots with surgery coff. ± 1

Proof of lemma 6:
When we cut open M along Σ we get 2 copies of $\Sigma, \Sigma_{ \pm}$

let $A=\gamma \times[-1,1]$ be a ubld of γ on $\Sigma=\Sigma_{ \pm}$ and $N_{ \pm}=A \times[0,1]$ a ubhd of $\gamma \subset \Sigma_{ \pm}$in M assume $\tau_{\gamma}^{ \pm 1}$ is supported in A
note: we think of $\tau_{\gamma} \pm 1: \Sigma_{-} \rightarrow \Sigma_{+}$and

$$
\left.\tau_{\gamma}^{ \pm 1}\right|_{\Sigma_{t}-A}:\left(\Sigma_{-}-A\right) \rightarrow\left(\tau_{+}-A\right) \text { is the }
$$

identity map
let $N=N_{-} \cup N_{+} \subset M$ and $N^{\prime}=N_{-} u_{\tau_{\gamma}} \pm N_{+} \subset M^{\prime}$
so in $(M-N)$ if we cut a long \sum and regive by $\tau_{\gamma}^{ \pm}$we get back M !
so $M-N$ and $M^{\prime}-N^{\prime}$ are homeomorphic!

$$
\text { ne. } M^{\prime}=(M-\text { solid torus }) \cup(\text { solid torus }) / \sim
$$

1.e. M^{\prime} is obtained from M by Dehn surgery on γ
now to figure out which surgery
note: $N_{+} U_{\tau_{\gamma}} N_{-}$is a soled torus
let's find its meridian

so meridian is $D_{t} \cup D_{-}$
ne.

so $c=7-\mu$ curve ie. $M^{\prime}=M_{K}(7-1)$
you can check τ_{γ}^{-1} gives $M_{k}(\gamma+1)$

Proof of lemma 7:
we build the homeomorphism

exercise: show this is a homeomorphism
exencusé:

1) Show how to get a Heegaird splitting of M if M is given by surgay on a link in S^{3} Hint put link of a Heegaard surface for S^{3} so the framing from Heegaard surface is nice.
2) Given a Heegaard decomposition of M find a Dehn surgery description.

Remark: Two other useful descriptions of 3 -mfd are open book decompositions and branched covens
exercise: look these up!

